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10 General Relativistic Models for Space-time Coordinates and

Equations of Motion

10.1 Time Coordinates

IAU resolution A4 (1991) set the framework presently used to define the
barycentric reference system (BRS) and the geocentric reference sys-
tem (GRS). Its third recommendation defined Barycentric Coordinate
Time (TCB) and Geocentric Coordinate Time (TCG) as time coordi-
nates of the BRS and GRS, respectively. In the fourth recommendation
another time coordinate is defined for the GRS, Terrestrial Time (TT).
This framework was further refined by the IAU Resolutions B1.3 and
B1.4 (2000) to provide consistent definitions for the coordinates and
metric tensor of the reference systems at the full post-Newtonian level
(Soffel, 2000). At the same time IAU Resolution B1.5 (2000) applied
this framework to time coordinates and time transformations between
reference systems, and IAU Resolution B1.9 (2000) re-defined Terres-
trial Time (Petit, 2000). TT differs from TCG by a constant rate,
dTT/dTCG = 1 − LG, where LG is a defining constant. The value
of LG (see Table 1.1) has been chosen to provide continuity with the
former definition of TT, i.e. that the unit of measurement of TT agrees
with the SI second on the geoid. The difference between TCG and TT
may be expressed as

TCG− TT = LG × (MJD− 43144.0)× 86400 s,

where MJD refers to the modified Julian date of International Atomic
Time (TAI). TAI is a realization of TT, apart from a constant offset:
TT = TAI + 32.184 s.
Before 1991, previous IAU definitions of the time coordinates in the
barycentric and geocentric frames required that only periodic differences
exist between Barycentric Dynamical Time (TDB) and Terrestrial Dy-
namical Time (TDT) (Kaplan, 1981). As a consequence, the spatial co-
ordinates in the barycentric frame had to be rescaled to keep the speed
of light unchanged between the barycentric and the geocentric frames
(Misner, 1982; Hellings, 1986). Thus, when barycentric (or TDB) units
of length were compared to geocentric (or TDT) units of length, a scale
difference, L, appeared (see also Chapter 1). This is no longer required
with the use of the TCG/TCB time scales.
The relation between TCB and TDB is linear. It may be given in seconds
by

TCB− TDB = LB× (MJD−43144.0)×86400+P0, P0 ≈ 6.55×10−5s.

However, since no precise definition of TDB exists, there is no definitive
value of LB and such an expression should be used with caution.
Figure 10.1 shows graphically the relationships between the time scales.
See IERS Technical Note 13, pages 137–142 for copies of the IAU Resolu-
tion A4 (1991) and Appendix 1 of this volume for copies of the resolutions
of the 24th IAU General Assembly (2000) relating to reference systems
and time coordinates.
The difference between Barycentric Coordinate Time (TCB) and Geo-
centric Coordinate Time (TCG) involves a four-dimensional transforma-
tion,

TCB− TCG = c−2

{∫ t

t0

[
v2

e

2
+ Uext(~xe)]dt+ ~ve · (~x− ~xe)

}
+O(c−4),

where ~xe and ~ve denote the barycentric position and velocity of the
Earth’s center of mass, ~x is the barycentric position of the observer and
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Uext is the Newtonian potential of all of the solar system bodies apart
from the Earth evaluated at the geocenter. In this formula, t is TCB
and t0 is chosen to be consistent with 1977 January 1, 0h0m0s TAI. This
formula is only valid to within the neglected terms, of order 10−16 in
rate, and IAU Resolution B1.5 (2000) provides formulas to compute the
O(c−4) terms within given uncertainty limits.

Former definitions
TDT

Terrestrial Dynamical Time
TDT TT

Present definitions
TT

Terrestrial Time

Linear transformation
dTT/dTCG 1   LG

TCG
Geocentric Coordinate Time

4-dimensional
space-time
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Fig. 10.1 Relations between time scales.

An approximation of the TCB−TCG formula is given by

(TCB− TCG) =
LC × (TT − TT0) + P (TT )− P (TT0)

(1− LB)
+c−2 ~ve·(~x−~xe)

where TT0 corresponds to JD 2443144.5 TAI (1977 January 1, 0 h) and
where the values of LC and LB may be found in Table 1.1. Periodic
terms denoted by P (TT ) have a maximum amplitude of around 1.6
ms and can be evaluated by the “FB” analytical model (Fairhead and
Bretagnon, 1990; Bretagnon 2001). Alternately, P (TT ) − P (TT0) may
be provided by a numerical time ephemeris such as TE405 (Irwin and
Fukushima, 1999), which provides values with an accuracy of 0.1 ns
from 1600 to 2200. Irwin (2003) has shown that TE405 and the 2001
version of the FB model differ by less than 15 ns over the years 1600
to 2200 and by only a few ns over several decades around the present
time. Finally a series, HF2002, providing the value of LC×(TT−TT0)+
P (TT )−P (TT0) as a function of TT over the years 1600–2200 has been
fit (Harada and Fukushima, 2002) to TE405. This fit differs from TE405
by less than 3 ns over the years 1600–2200 with an RMS error of 0.5 ns.
Note that in this section on the computation of TCB−TCG, TT is used
as a time argument while the actual argument of the different realizations
is Teph (see Chapter 3). The resulting error in TCB−TCG is at most
approximately 20 ps.
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The time ephemeris TE405 is available in a Chebyshev form at <19>.
The 2001 version of the FB model is available at <20>, where the
files of interest are fb2001.f, fb2001.dat, fb2001.in, fb2001.out, and
README.fb2001.f. The HF2002 model is available in the same di-
rectory, where the files of interest are Xhf2002.f, HF2002.DAT and
hf2002.out.

10.2 Equations of Motion for an Artificial Earth Satellite 21

The relativistic treatment of the near-Earth satellite orbit determination
problem includes corrections to the equations of motion, the time trans-
formations, and the measurement model. The two coordinate systems
generally used when including relativity in near-Earth orbit determina-
tion solutions are the solar system barycentric frame of reference and
the geocentric or Earth-centered frame of reference.

Ashby and Bertotti (1986) constructed a locally inertial E-frame in the
neighborhood of the gravitating Earth and demonstrated that the gravi-
tational effects of the Sun, Moon, and other planets are basically reduced
to their tidal forces, with very small relativistic corrections. Thus the
main relativistic effects on a near-Earth satellite are those described by
the Schwarzschild field of the Earth itself. This result makes the geocen-
tric frame more suitable for describing the motion of a near-Earth satel-
lite (Ries et al., 1989). Later on, two advanced relativistic formalisms
have been elaborated to treat the problem of astronomical reference sys-
tems in the first post-Newtonian approximation of general relativity. One
formalism is due to Brumberg and Kopeikin (Kopeikin, 1988; Brumberg
and Kopeikin, 1989; Brumberg, 1991) and another one is due to Damour,
Soffel and Xu (Damour, Soffel, Xu, 1991, 1992, 1993, 1994). These allow
a full post-Newtonian treatment (Soffel, 2000) and form the basis of IAU
Resolutions B1.3 and B1.4 (2000).

The relativistic correction to the acceleration of an artificial Earth satel-
lite is

∆~̈r = GME

c2r3

{
[2(β + γ)GME

r − γ~̇r · ~̇r]~r + 2(1 + γ)(~r · ~̇r)~̇r
}

+

(1 + γ)GME

c2r3

[
3
r2 (~r × ~̇r)(~r · ~J) + (~̇r × ~J)

]
+{

(1 + 2γ)
[
~̇R×

(
−GMS

~R
c2R3

)
× ~̇r
]}
,

(1)

where

c = speed of light,

β, γ = PPN parameters equal to 1 in General Relativity,

~r is the position of the satellite with respect to the Earth,
~R is the position of the Earth with respect to the Sun,
~J is the Earth’s angular momentum per unit mass

(| ~J | ∼= 9.8× 108m2/s), and

GME and GMS are the gravitational coefficients of the Earth and
Sun, respectively.

19ftp://astroftp.phys.uvic.ca in the directory /pub/irwin/tephemeris
20ftp://maia.usno.navy.mil in the directory /conv2000/chapter10/software
21The IAU Resolutions B1.3 and B1.4 (2000) and references therein now provide a consistent framework for the defi-

nition of the geocentric and barycentric reference systems at the full post-Newtonian level using harmonic coordinates.
The equations of motion for spherically-symmetric and uniformly rotating bodies in these systems are the same as those
previously derived in a Parametrized Post-Newtonian system.
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The effects of Lense-Thirring precession (frame-dragging), geodesic (de
Sitter) precession have been included. The relativistic effects of the
Earth’s oblateness have been neglected here but, if necessary, they could
be included using the full post-Newtonian framework of IAU Resolutions
B1.3 and B1.4 (2000). The independent variable of the satellite equations
of motion may be, depending on the time transformation being used,
either TT or TCG. Although the distinction is not essential to compute
this relativistic correction, it is important to account for it properly in
the Newtonian part of the acceleration.

10.3 Equations of Motion in the Barycentric Frame
(see footnote 21 preceeding page)

The n-body equations of motion for the solar system frame of reference
(the isotropic Parameterized Post-Newtonian system with Barycentric
Coordinate Time (TCB) as the time coordinate) are required to describe
the dynamics of the solar system and artificial probes moving about the
solar system (for example, see Moyer, 1971). These are the equations
applied to the Moon’s motion for Lunar Laser Ranging (Newhall et al.,
1987). In addition, relativistic corrections to the laser range measure-
ment, the data timing, and the station coordinates are required (see
Chapter 11).
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