
N
o
.
3
2 IERS

Technical
Note

7 Displacement of Reference Points

Models describing the displacements of reference points due to various
effects are provided. These models relate the regularized position XR(t)
of the reference points (see Chapter 4) to their instantaneous positions.
Two kinds of displacements are distinguished: those that affect the ref-
erence markers on the crust and those that affect the reference points
of the instruments, which are technique-dependent. The first category
includes (a) deformations of the solid Earth due to ocean tidal loading
as well as those due to the body tides arising from the direct effect of the
external tide generating potential and centrifugal perturbations caused
by Earth rotation variations, including the pole tide, (b) atmospheric
loading. The second category presently only includes the thermal defor-
mation of a VLBI antenna.

7.1 Displacement of Reference Markers on the Crust

7.1.1 Local Site Displacement due to Ocean Loading

Ocean tides cause a temporal variation of the ocean mass distribution
and the associated load on the crust and produce time-varying defor-
mations of the Earth. The modeling of the associated site displacement
is dealt with in this section. The displacement model does not include
the translation of the solid Earth that counterbalances the motion of the
oceans’ center of mass. This convention follows Farrell (1972).

Ocean Loading

Three-dimensional site displacements due to ocean tide loading are com-
puted using the following scheme. Let ∆c denote a displacement compo-
nent (radial, west, south) at a particular site and time t. Let W denote
the tide generating potential (e.g. Hartmann and Wenzel, 1995; Tamura,
1987; Cartwright and Tayler, 1971; Cartwright and Edden, 1973),

W = g
∑

j

KjP
mj

2 (cosψ) cos(ωjt+ χj +mjλ), (1)

where only degree two harmonics are retained. The symbols designate
colatitude ψ, longitude λ, tidal angular velocity ωj , amplitude Kj and
the astronomical argument χj at t = 0h. Spherical harmonic order mj

distinguishes the fundamental bands, i.e. long-period (m = 0), diurnal
(m = 1) and semidiurnal (m = 2). The parameters Hj and ωj are used
to obtain the most completely interpolated form

∆c =
∑

j

acj cos(ωjt+ χj − φcj), (2)

with

acj cosφcj = Hj

[
Ack cos Φck

H̄k

(1− p) + Ac,k+1 cos Φc,k+1

H̄k+1
p

]
,

acj sinφcj = Hj

[
Ack sin Φck

H̄k

(1− p) + Ac,k+1 sin Φc,k+1

H̄k+1
p

]
.

For each site, the amplitudes Ack and phases Φck, 1 ≤ k ≤ 11, are taken
from models such as those listed in Table 7.2. For clarity, symbols written
with bars overhead designate tidal potential quantities associated with
the small set of partial tides represented in the table. These are the
semidiurnal waves M2, S2, N2,K2, the diurnal waves K1, O1, P1, Q1, and
the long-period waves Mf ,Mm, and Ssa.
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Interpolation is possible only within a fundamental band, i.e. we demand

m̄k = mj = m̄k+1. (3)

Then

p =
ωj − ω̄k

ω̄k+1 − ω̄k
, ω̄k ≤ ωj ≤ ω̄k+1.

If no ω̄k or ω̄k+1 can be found meeting (3), p is set to zero or one,
respectively.

A shorter form of (2) is obtained if the summation considers only the
tidal species shown in Table 7.1 and corrections for the modulating effect
of the lunar node. Then,

∆c =
∑

j

fjAcj cos(ωjt+ χj + uj − Φcj), (4)

where fj and uj depend on the longitude of the lunar node. The as-
tronomical arguments needed in (4) can be computed with subroutine
ARG. The code for this subroutine can be obtained by anonymous ftp
to <12>. The Tamura tide potential is available from the International
Centre for Earth Tides, Observatoire Royal de Belgique, Bruxelles.

Information similar to that provided in Table 7.1 is available electron-
ically from the ocean loading service site at <13>. Some precomputed
tables are available at <14>.

Coefficients for stations that are farther away than 10 km from precom-
puted ones should always be recomputed.

The coefficients shown in Table 7.1 have been computed according to
Scherneck (1991). Tangential displacements are to be taken positive in
west and south directions. Tables are available derived from different
ocean tide maps, GOT99.2 (Ray, 1999), CSR4.0 and CSR 3.0 (Eanes
and Bettadpur, 1995), and models due to LeProvost et al. (1994). The
automatic service computes coefficients selectably from a range of eleven
ocean tide models, see Table 7.2.

The use of the most recent of these models is recommended (GOT00.2
for a TOPEX/POSEIDON derived solution, FES99 for a hydrodynamic
solution). However, older models might be preferred for internal con-
sistency. Since many space geodesy stations are inland or near coasts,
the accuracy of the tide models in the shelf areas is more crucial than in
the open sea. Refined coastlines have been derived from the topographic
data sets ETOPO5 and Terrain Base (Row et al., 1995) of the National
Geophysical Data Center, Boulder, CO. Ocean tide mass budgets have
been constrained using a uniform co-oscillating oceanic layer. Load con-
volution employed a disk-generating Green’s function method (Farrell,
1972; Zschau, 1983; Scherneck, 1990). An assessment of the accuracy of
the loading model is given in Scherneck (1993).

Additional contributions to ocean-induced displacement arise from the
frequency dependence of the load Love numbers due to the Nearly Diur-
nal Free Wobble in the diurnal tidal band. The effect of this dependence
may be taken into account, following Wahr and Sasao (1981), by incre-
menting the body tide Love numbers as explained further below.

12maia.usno.navy.mil/conv2000/chapter7
13http://www.oso.chalmers.se/∼loading
14http://www.oso.chalmers.se/∼hgs/README.html
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Table 7.1 Sample of ocean loading table file. Each site record shows a header with the site name,
the CDP monument number, geographic coordinates and comments. First three rows of
numbers designate amplitudes (meter), radial, west, south, followed by three lines with
the corresponding phase values (degrees).

Columns designate partial tides M2, S2, N2,K2,K1, O1, P1, Q1,Mf ,Mm, and Ssa.
$$

ONSALA60 7213
$$
$$ Computed by H.G. Scherneck, Uppsala University, 1989
$$ ONSALA 7213 lon/lat: 11.9263 57.3947
.00384 .00091 .00084 .00019 .00224 .00120 .00071 .00003 .00084 .00063 .00057
.00124 .00034 .00031 .00009 .00042 .00041 .00015 .00006 .00018 .00010 .00010
.00058 .00027 .00021 .00008 .00032 .00017 .00009 .00004 .00007 .00001 .00020

-56.0 -46.1 -90.7 -34.4 -44.5 -123.2 -49.6 178.4 14.9 37.3 24.6
75.4 97.6 40.8 94.8 119.0 25.4 98.7 -14.1 -177.0 -126.7 -175.8
84.2 131.3 77.7 103.9 17.2 -55.0 25.2 -165.0 173.3 121.8 91.3

Table 7.2 Ocean tide models available at the automatic loading service.
Model code Reference Input Resolution

SCHW Schwiderski and Szeto (1981) Tide gauge 1◦ × 1◦

CSR3.0, CSR4.0 Eanes (1994) Topex/Poseidon Altim. 1◦ × 1◦

Eanes and Bettadpur (1995) T/P + LEPR loading 0.5◦ × 0.5◦

TPX0.5 Egbert et al. (1994) inverse hydrodyn, solution
from T/P Altim. 256 × 512

FES94 (LEPR) Le Provost et al. (1994) numerical model 0.5◦ × 0.5◦

FES95
FES98 Le Provost et al. (1998) num. mdl. + assim. Altim. 0.5◦ × 0.5◦

FES99 Lefèvre et al. (2000) numerical model 0.25◦ × 0.25◦

GOT99.2, GOT00.2 Ray (1999) T/P 0.5◦ × 0.5◦

NAO99.b Matsumoto et al. (2000) num. + T/P assim. 0.5◦ × 0.5◦

7.1.2 Effects of the Solid Earth Tides

Site displacements caused by tides of spherical harmonic degree and
order (nm) are characterized by the Love number hnm and the Shida
number lnm. The effective values of these numbers depend on station
latitude and tidal frequency (Wahr, 1981). The latitude dependence and
a small interband variation are caused by the Earth’s ellipticity and the
Coriolis force due to Earth rotation. A strong frequency dependence
within the diurnal band is produced by the Nearly Diurnal Free Wobble
resonance associated with the free core nutation (FCN) in the wobbles
of the Earth and its core regions which contribute to the tidal defor-
mations via their centrifugal effects. Additionally, the resonance in the
deformation due to ocean tidal loading, which is not included in the
computations of the last section which use constant load Love numbers,
may be represented in terms of effective contributions to h21 and l21.
A further frequency dependence, which is most pronounced in the long-
period tidal band, arises from mantle anelasticity leading to corrections
to the elastic Earth Love numbers. The contributions to the Love num-
ber parameters from anelasticity and ocean tidal loading as well as those
from the centrifugal perturbations due to the wobbles have imaginary
parts which cause the tidal displacements to lag slightly behind the tide
generating potential. All these effects need to be taken into account
when an accuracy of 1 mm is desired in determining station positions.
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In order to account for the latitude dependence of the effective Love and
Shida numbers, the representation in terms of multiple h and l parame-
ters employed by Mathews et al. (1995) is used. In this representation,
parameters h(0) and l(0) play the roles of h2m and l2m, while the latitude
dependence is expressed in terms of additional parameters h(2), h′ and
l(1), l(2), l′. These parameters are defined through their contributions to
the site displacement as given by equations (5) below. Their numerical
values as listed in the Conventions 1996 have since been revised, and the
new values presented in Table 7.4 are used here. These values pertain
to the elastic Earth and anelasticity models referred to in Chapter 6.
The vector displacement due to a tidal term of frequency f is given in
terms of the several parameters by the following expressions that result
from evaluation of the defining equation (6) of Mathews et al. (1995):
For a long-period tide of frequency f :

∆~rf =
√

5
4πHf

{ [
h(φ)

(
3
2 sin2 φ− 1

2

)
+
√

4π
5 h

′
]
cos θf r̂

+3l(φ) sinφ cosφ cos θf n̂

+cosφ
[
3l(1) sin2 φ−

√
4π
5 l

′
]
sin θf ê

}
.

(5a)

For a diurnal tide of frequency f :

∆~rf = −
√

5
24πHf

{
h(φ)3 sinφ cosφ sin(θf + λ) r̂

+
[
3l(φ) cos 2φ− 3l(1) sin2 φ+

√
24π
5 l′
]
sin(θf + λ) n̂

+
[(

3l(φ)−
√

24π
5 l′
)

sinφ− 3l(1) sinφ cos 2φ
]
cos(θf + λ) ê

}
.

(5b)

For a semidiurnal tide of frequency f :

∆~rf =
√

5
96πHf{ [h(φ)3 cos2 φ cos(θf + 2λ) r̂

−6 sinφ cosφ[l(φ) + l(1)] cos(θf + 2λ) n̂
−6 cosφ[l(φ) + l(1) sin2 φ] sin(θf + 2λ) ê}.

(5c)

In the above expressions,

h(φ) = h(0) + h(2)[(3/2) sin2 φ− 1/2],
l(φ) = l(0) + l(2)[(3/2) sin2 φ− 1/2],

(6)

Hf = amplitude (m) of the tidal term of frequency f ,

φ = geocentric latitude of station,

λ = east longitude of station,

θf = tide argument for tidal constituent with frequency f ,

r̂ = unit vector in the radial direction,

ê = unit vector in the east direction,

n̂ = unit vector at right angles to r̂ in the northward direction.

The convention used in defining the tidal amplitude Hf is as in Cart-
wright and Tayler (1971). To convert amplitudes defined according to
other conventions that have been employed in recent more accurate ta-
bles, use the conversion factors given in Chapter 6, Table 6.5.
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Equations (5) assume that the Love and Shida number parameters are all
real. Generalization to the case of complex parameters is done simply by
making the following replacements for the combinations L cos(θf +mλ)
and L sin(θf +mλ), wherever they occur in those equations:

L cos(θf +mλ) → LR cos(θf +mλ)− LI sin(θf +mλ), (7a)

L sin(θf +mλ) → LR sin(θf +mλ) + LI cos(θf +mλ), (7b)

where L is a generic symbol for h(0), h(2), h′, l(0), l(1), l(2), and l′, and LR

and LI stand for their respective real and imaginary parts.
The complex values of these 7 parameters are computed for the diurnal
body tides from resonance formulae of the form given in equation (6) of
Chapter 6 using the values listed in equation (7) of that chapter for the
resonance frequencies σα and those listed in Table 7.3 for the coefficients
L0 and Lα relating to each of the multiple h and l Love/Shida numbers.
The manner in which σα and the Lα were computed is explained in
Chapter 6, where mention is also made of the models used for the elastic
Earth and for mantle anelasticity. As was noted in that chapter, the
frequency dependence of the ocean tide contributions to certain Earth
parameters in the equations of motion for the wobbles has the effect
of making the resonance formulae inexact. The difference between the
exact and resonance formula values is included in the tabulated values of
h

(0)
21 and l

(0)
21 in Table 7.4. (The only case where this difference makes a

contribution above the cut-off in Table 7.5a is in the radial displacement
due to the ψ1 tide.) Also included in the values listed in Table 7.4 are the
resonant ocean tidal loading corrections outlined in the next paragraph.

Table 7.3 Parameters in the Resonance Formulae for the Displacement
Love Numbers.

h(0) h(2)

α Re Lα Im Lα Re Lα Im Lα

0 0.60671× 10+0 −0.2420× 10−2 −0.615× 10−3 −0.122× 10−4

1 −0.15777× 10−2 −0.7630× 10−4 0.160× 10−5 0.116× 10−6

2 0.18053× 10−3 −0.6292× 10−5 0.201× 10−6 0.279× 10−8

3 −0.18616× 10−5 0.1379× 10−6 −0.329× 10−7 −0.217× 10−8

l(0) l(1)

α Re Lα Im Lα Re Lα Im Lα

0 .84963× 10−1 −.7395× 10−3 .121× 10−2 .136× 10−6

1 −.22107× 10−3 −.9646× 10−5 −.316× 10−5 −.166× 10−6

2 −.54710× 10−5 −.2990× 10−6 .272× 10−6 −.858× 10−8

3 −.29904× 10−7 −.7717× 10−8 −.545× 10−8 .827× 10−11

l(2) l′

α Re Lα Im Lα Re Lα Im Lα

0 .19334× 10−3 −.3819× 10−5 −.221× 10−3 −.474× 10−7

1 −.50331× 10−6 −.1639× 10−7 .576× 10−6 .303× 10−7

2 −.66460× 10−8 .5076× 10−9 .128× 10−6 −.378× 10−8

3 .10372× 10−7 .7511× 10−9 −.655× 10−8 −.291× 10−9

Site displacements caused by solid Earth deformations due to ocean tidal
loading have been dealt with in the first section of this chapter. Constant
nominal values were assumed for the load Love numbers in computing
these. The values used for tides of degree 2 were
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h′2
(nom) = −1.001, l′2

(nom) = 0.0295, k′2
(nom) = −0.3075.

Since resonances in the diurnal band cause the values of the load Love
numbers too to vary, corrections need to be applied to the results of the
first section. These corrections can be expressed in terms of effective
ocean tide contributions δh(OT ) and δl(OT ) to the respective body tide
Love numbers h(0)

21 and l(0)21 . δh(OT ) and δl(OT ) are given by expressions
of the form (8) of Chapter 6, with appropriate replacements. They were
computed using the same ocean tide admittances as in that chapter,
and using the resonance parameters listed in Table 6.2 for the load Love
numbers; they are included in the values listed in Table 7.4 under h(0)R

and h(0)I for the diurnal tides.

The variation of h(0)
20 and l

(0)
20 across the zonal tidal band, (nm) = (20),

due to mantle anelasticity, is described by the formulae

h
(0)
20 = 0.5998−9.96×10−4

{
cot

απ

2

[
1−

(
fm

f

)α]
+ i

(
fm

f

)α}
, (8a)

l
(0)
20 = 0.0831− 3.01× 10−4

{
cot

απ

2

[
1−

(
fm

f

)α]
+ i

(
fm

f

)α}
(8b)

on the basis of the anelasticity model already referred to. Here f is the
frequency of the zonal tidal constituent, fm is the reference frequency
equivalent to a period of 200 s, and α = 0.15.

Table 7.4 lists the values of h(0), h(2), h′, l(0), l(1), l(2), and l′ for those
tidal frequencies for which they are needed for use in the computational
procedure described below. The tidal frequencies shown in the table are
in cycles per sidereal day (cpsd). Periods, in solar days, of the nutations
associated with the diurnal tides are also shown.

Computation of the variations of station coordinates due to solid Earth
tides, like that of geopotential variations, is done most efficiently by the
use of a two-step procedure. The evaluations in the first step use the
expression in the time domain for the full degree 2 tidal potential or for
the parts that pertain to particular bands (m = 0, 1, or 2). Nominal
values common to all the tidal constituents involved in the potential and
to all stations are used for the Love and Shida numbers h2m and l2m

in this step. They are chosen with reference to the values in Table 7.4
so as to minimize the computational effort needed in Step 2. Along
with expressions for the dominant contributions from h(0) and l(0) to the
tidal displacements, relatively small contributions from some of the other
parameters are included in Step 1 for reasons of computational efficiency.
The displacements caused by the degree 3 tides are also computed in the
first step, using constant values for h3 and l3.

Corrections to the results of the first step are needed to take account of
the frequency dependent deviations of the Love and Shida numbers from
their respective nominal values, and also to compute the out-of-phase
contributions from the zonal tides. Computations of these corrections
constitute Step 2. The total displacement due to the tidal potential is
the sum of the displacements computed in Steps 1 and 2.

The full scheme of computation is outlined in the chart on page 79.
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Table 7.4 Displacement Love number parameters for degree 2 tides. Super-
scripts R and I identify the real and imaginary parts, respectively.

Name Period Frequency h(0)R h(0)I h(2) h′

Semidiurnal -2 cpsd .6078 -.0022 -.0006
Diurnal

2Q1 6.86 0.85461 .6039 -.0027 -.0006
σ1 7.10 0.85946 .6039 -.0026 -.0006

135,645 9.12 0.89066 .6036 -.0026 -.0006
Q1 9.13 0.89080 .6036 -.0026 -.0006
ρ1 9.56 0.89565 .6035 -.0026 -.0006

145,545 13.63 0.92685 .6028 -.0025 -.0006
O1 13.66 0.92700 .6028 -.0025 -.0006
τ1 14.77 0.93246 .6026 -.0025 -.0006

Nτ1 23.94 0.95835 .6011 -.0024 -.0006
NO1 27.55 0.96381 .6005 -.0023 -.0006
χ1 31.81 0.96865 .5998 -.0023 -.0006
π1 121.75 0.99181 .5878 -.0015 -.0006
P1 182.62 0.99454 .5817 -.0011 -.0006
S1 365.26 0.99727 .5692 -.0004 -.0006

165,545 6798.38 0.99985 .5283 .0023 -.0007
K1 infinity 1.00000 .5236 .0030 -.0007

165,565 -6798.38 1.00015 .5182 .0036 -.0007
165,575 -3399.19 1.00029 .5120 .0043 -.0007

ψ1 -365.26 1.00273 1.0569 .0036 -.0001
166,564 -346.64 1.00288 .9387 -.0050 -.0003

φ1 -182.62 1.00546 .6645 -.0059 -.0006
θ1 -31.81 1.03135 .6117 -.0030 -.0006
J1 -27.55 1.03619 .6108 -.0030 -.0006

OO1 -13.66 1.07300 .6080 -.0028 -.0006
Long period

55,565 6798.38 .000147 .6344 -.0093 -.0006 .0001
Ssa 182.62 .005461 .6182 -.0054 -.0006 .0001
Mm 27.55 .036193 .6126 -.0041 -.0006 .0001
Mf 13.66 .073002 .6109 -.0037 -.0006 .0001

75,565 13.63 .073149 .6109 -.0037 -.0006 .0001

Name Period Frequency l(0)R l(0)I l(1) l(2) l′

Semidiurnal -2 cpsd .0847 -.0007 .0024 .0002
Diurnal

Q1 9.13 0.89080 .0846 -.0006 .0012 .0002 -.0002
145,545 13.63 0.92685 .0846 -.0006 .0012 .0002 -.0002

O1 13.66 0.92700 .0846 -.0006 .0012 .0002 -.0002
NO1 27.55 0.96381 .0847 -.0006 .0012 .0002 -.0002

P1 182.62 0.99454 .0853 -.0006 .0012 .0002 -.0002
165,545 6798.38 0.99985 .0869 -.0006 .0011 .0002 -.0003

K1 infinity 1.00000 .0870 -.0006 .0011 .0002 -.0003
165,565 -6798.38 1.00015 .0872 -.0006 .0011 .0002 -.0003

ψ1 -365.26 1.00273 .0710 -.0020 .0019 .0002 .0001
φ1 -182.62 1.00546 .0828 -.0007 .0013 .0002 -.0002
J1 -27.55 1.03619 .0845 -.0006 .0012 .0002 -.0002

OO1 -13.66 1.07300 .0846 -.0006 .0012 .0002 -.0002
Long period

55,565 6798.38 .000147 .0936 -.0028 .0000 .0002
Ssa 182.62 .005461 .0886 -.0016 .0000 .0002
Mm 27.55 .036193 .0870 -.0012 .0000 .0002
Mf 13.66 .073002 .0864 -.0011 .0000 .0002

75,565 13.63 .073149 .0864 -.0011 .0000 .0002
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CORRECTIONS FOR THE STATION TIDAL DISPLACEMENTS

Step 1: Corrections to be computed in the time domain

in-phase for degree 2 and 3 Nominal values

. for degree 2 → eq (9) h2 → h(φ) = h(0) + h(2)[(3 sin2 φ− 1)/2]

l2 → l(φ) = l(0) + l(2)[(3 sin2 φ− 1)/2]

h(0) = 0.6078, h(2) = −0.0006; l(0) = 0.0847, l(2) = 0.0002
. for degree 3 → eq (10) h3 = 0.292 and l3 = 0.015

out-of-phase for degree 2 only Nominal values
. diurnal tides → eq (14) hI = −0.0025 and lI = −0.0007
. semidiurnal tides → eq (15) hI = −0.0022 and lI = −0.0007

contribution from latitude dependence Nominal values

. diurnal tides → eq (12) l(1) = 0.0012

. semidiurnal tides → eq (13) l(1) = 0.0024

Step 2: Corrections to be computed in the frequency domain and to be added to results of Step 1

in-phase for degree 2
. diurnal tides → eqs (16) → Sum over all the components of Table 7.5a
. semidiurnal tides negligible

in-phase and out-of-phase for degree 2

. long-period tides → eqs (17) → Sum over all the components of Table 7.5b

Displacement due to degree 2 tides, with nominal values for
h

(0)
2m and l

(0)
2m

The first stage of the Step 1 calculations employs real nominal values h2

and l2 common to all the degree 2 tides for the Love and Shida numbers.
It is found to be computationally most economical to choose these to be
the values for the semidiurnal tides (which have very little intra-band
variation). On using the nominal values, the vector displacement of the
station due to the degree 2 tides is given by

∆~r =
3∑

j=2

GMjR
4
e

GM⊕R3
j

{
h2 r̂

(
3
2
(R̂j · r̂)2 −

1
2

)
+ 3l2(R̂j · r̂)[R̂j − (R̂j · r̂) r̂]

}
, (9)

where h(0)
22 and l

(0)
22 of the semidiurnal tides are chosen as the nominal

values h2 and l2. The out-of-phase displacements due to the imaginary
parts of the Love numbers are dealt with separately below. In equation
(9),

GMj = gravitational parameter for the Moon (j = 2)
or the Sun (j = 3),

GM⊕ = gravitational parameter for the Earth,
R̂j , Rj = unit vector from the geocenter to Moon or Sun and

the magnitude of that vector,
Re = Earth’s equatorial radius,
r̂, r = unit vector from the geocenter to the station and

the magnitude of that vector,
h2 = nominal degree 2 Love number,
l2 = nominal degree 2 Shida number.

Note that the part proportional to h2 gives the radial (not vertical)
component of the tide-induced station displacement, and the terms in l2
represent the vector displacement transverse to the radial direction (and
not in the horizontal plane).
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The computation just described may be generalized to include the lati-
tude dependence arising through h(2) by simply adding h(2)[(3/2) sin2 φ−
(1/2)] to the constant nominal value given above, with h(2) = −0.0006.
The addition of a similar term (with l(2) = 0.0002) to the nominal value
of l2 takes care of the corresponding contribution to the transverse dis-
placement. The resulting incremental displacements are small, not ex-
ceeding 0.4 mm radially and 0.2 mm in the transverse direction.

Displacements due to degree 3 tides

The Love numbers of the degree 3 tides may be taken as real and constant
in computations to the degree of accuracy aimed at here. The vector
displacement due to these tides is then given by

∆~r =
3∑

j=2

GMjR
5
e

GM⊕R4
j

{
h3 r̂

(
5
2
(R̂j · r̂)3 −

3
2
(R̂j · r̂)

)
+ l3

(
15
2

(R̂j · r̂)2 −
3
2

)
[R̂j − (R̂j · r̂)r̂]

}
. (10)

Only the Moon’s contribution (j = 2) need be computed, the term due to
the Sun being quite ignorable. The transverse part of the displacement
(10) does not exceed 0.2 mm, but the radial displacement can reach 1.7
mm.

Contributions to the transverse displacement due to the l(1)

term

The imaginary part of l(1) is completely ignorable, as is the intra-band
variation of Re l(1); and l(1) is effectively zero in the zonal band.

In the expressions given below, and elsewhere in this chapter,

Φj = body fixed geocentric latitude of Moon or Sun, and
λj = body fixed east longitude (from Greenwich) of Moon or Sun.

The following formulae may be employed when the use of Cartesian
coordinates Xj , Yj , Zj of the body relative to the terrestrial reference
frame is preferred:

P 0
2 (sinΦj) = 1

R2
j

(
3
2Z

2
j − 1

2R
2
j

)
, (11a)

P 1
2 (sinΦj) cosλj = 3XjZj

R2
j
,

P 1
2 (sinΦj) sinλj = 3YjZj

R2
j
,

(11b)

P 2
2 (sinΦj) cos 2λj = 3

R2
j
(X2

j − Y 2
j ),

P 2
2 (sinΦj) sin 2λj = 6

R2
j
XjYj .

(11c)

Contribution from the diurnal band (with l(1) = 0.0012):

δ~t = −l(1) sinφ
3∑

j=2

GMjR
4
e

GM⊕R3
j

P 1
2 (sinΦj)[sinφ cos(λ− λj) n̂− cos 2φ sin(λ− λj) ê]. (12)

Contribution from the semidiurnal band (with l(1) = 0.0024):

δ~t = −1
2
l(1) sinφ cosφ

3∑
j=2

GMjR
4
e

GM⊕R3
j

P 2
2 (sinΦj)[cos 2(λ− λj) n̂+ sinφ sin 2(λ− λj) ê]. (13)

The contributions of the l(1) term to the transverse displacements caused
by the diurnal and semidiurnal tides could be up to 0.8 mm and 1.0 mm
respectively.
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Out of phase contributions from the imaginary parts of h(0)
2m and

l
(0)
2m

In the following, hI and lI stand for the imaginary parts of h(0)
2m and l(0)2m.

Contributions δr to radial and δ~t to transverse displacements from diur-
nal tides (with hI = −0.0025, lI = −0.0007):

δr = −3
4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj sin 2φ sin(λ− λj), (14a)

δ~t = −3
2
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj [cos 2φ sin(λ− λj) n̂+ sinφ cos(λ− λj) ê]. (14b)

Contributions from semidiurnal tides (with hI=−0.0022, lI=−0.0007):

δr = −3
4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj cos2 φ sin 2(λ− λj), (15a)

δ~t =
3
4
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj [sin 2φ sin 2(λ− λj) n̂− 2 cosφ cos 2(λ− λj) ê]. (15b)

The out-of-phase contributions from the zonal tides has no closed ex-
pression in the time domain.
Computations of Step 2 are to take account of the intra-band variation
of h(0)

2m and l
(0)
2m. Variations of the imaginary parts are negligible except

as stated below. For the zonal tides, however, the contributions from
the imaginary part have to be computed in Step 2.

Correction for frequency dependence of the Love and Shida
numbers
(a) Contributions from the diurnal band

Corrections to the radial and transverse station displacements δr and δ~t
due to a diurnal tidal term of frequency f are obtainable from equation
(5b):

δr = [δR(ip)
f sin(θf + λ) + δR

(op)
f cos(θf + λ)] sin 2φ, (16a)

δ~t = [δT (ip)
f cos(θf + λ)− δT

(op)
f sin(θf + λ)] sinφ ê

+ [δT (ip)
f sin(θf + λ) + δT

(op)
f cos(θf + λ)] cos 2φ n̂,

(16b)

where (
δR

(ip)
f

δR
(op)
f

)
= − 3

2

√
5

24πHf

(
δhR

f

δhI
f

)
,(

δT
(ip)
f

δT
(op)
f

)
= −3

√
5

24πHf

(
δlRf
δlIf

)
,

(16c)

and

δhR
f and δhI

f are the differences of h(0)R and h(0)I at frequency f
from the nominal values h2 and hI used in equations (9) and
(14a), respectively,

δlRf and δlIf are the differences of l(0)R and l(0)I at frequency f
from the nominal values l2 and lI used in equations (9) and
(14b), respectively.
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Table 7.5a Corrections due to the frequency variation of Love and Shida numbers for diurnal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values are
h2 = 0.6078 and l2 = 0.0847 for the real parts, and hI = −0.0025 and lI = −0.0007 for
the imaginary parts. Frequencies shown are in degrees per hour.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R(ip)
f ∆R(op)

f ∆T (ip)
f ∆T (op)

f

Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -0.08 0.00 -0.01 0.01
13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -0.10 0.00 0.00 0.00

O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -0.51 0.00 -0.02 0.03
NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 0.06 0.00 0.00 0.00
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -0.06 0.00 0.00 0.00
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1.23 -0.07 0.06 0.01

15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -0.22 0.01 0.01 0.00
K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 12.00 -0.78 -0.67 -0.03

15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 1.73 -0.12 -0.10 0.00
ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 -0.50 -0.01 0.03 0.00
φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 -0.11 0.01 0.01 0.00

(b) Contributions from the long-period band

Corrections δr and δ~t due to a zonal tidal term of frequency f include
both in-phase (ip) and out-of-phase (op) parts. From equations (5a) and
(7) one finds that

δr =
(

3
2

sin2 φ− 1
2

)
(δR(ip)

f cos θf + δR
(op)
f sin θf ), (17a)

and
δ~t = (δT (ip)

f cos θf + δT
(op)
f sin θf ) sin 2φ n̂, (17b)

where (
δR

(ip)
f

δR
(op)
f

)
=

√
5
4πHf

(
δhR

f

−δhI
f

)
,

and (
δT

(ip)
f

δT
(op)
f

)
= 3

2

√
5
4πHf

(
δlRf
−δlIf

)
.

(17c)

Table 7.5b Corrections due to frequency variation of Love and Shida numbers for zonal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values
are h = 0.6078 and l = 0.0847.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R(ip)
f ∆R(op)

f ∆T (ip)
f ∆T (op)

f

0.00221 55,565 0 0 0 0 1 0 0 0 0 0 1 0.47 0.16 0.23 0.07
Ssa 0.08214 57,555 0 0 2 0 0 0 0 0 -2 2 -2 -0.20 -0.11 -0.12 -0.05
Mm 0.54438 65,455 0 1 0 -1 0 0 -1 0 0 0 0 -0.11 -0.09 -0.08 -0.04
Mf 1.09804 75,555 0 2 0 0 0 0 0 0 -2 0 -2 -0.13 -0.15 -0.11 -0.07

1.10024 75,565 0 2 0 0 1 0 0 0 -2 0 -1 -0.05 -0.06 -0.05 -0.03

Values of ∆Rf and ∆Tf listed in Tables 7.5a and 7.5b are for the con-
stituents that must be taken into account to ensure an accuracy of 1
mm.
A FORTRAN program for computing the various corrections is available
at <15>.

15ftp://omaftp.oma.be/dist/astro/dehant/IERS/
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7.1.3 Permanent deformation

The tidal model described above does contain in principle a time inde-
pendent part so that the coordinates obtained by taking into account
this model in the analysis will be “conventional tide free” values. (Note
that they do not correspond to what would be observed in the absence
of tidal perturbation. See the discussion in Chapter 1.) This section
allows a user to compute “mean tide” coordinates from “conventional
tide free” coordinates.
Specifically, the degree 2 zonal tide generating potential includes a spec-
tral component of zero frequency and amplitude H0 = −0.31460 m, and
its effect enters the tidal displacement model through the time indepen-
dent component of the expression (9). Evaluation of this component
may be done using equations (5a) and (6) with Hf = H0, θf = 0, and
with the same nominal values for the Love number parameters as were
used in Step 1: h2 = 0.6078, l2 = 0.0847 along with h(2) = −0.0006
and l(2) = 0.0002. One finds the radial component of the permanent
displacement according to (9) to be

[−0.1206 + 0.0001P2(sinφ)]P2(sinφ) m, (18a)

and the transverse component to be

[−0.0252− 0.0001P2(sinφ)] sin 2φ m (18b)

northwards, where P2(sinφ) = (3 sin2 φ− 1)/2.
These are the components of the vector to be added to the “conventional
tide free” computed tide-corrected position to obtain the “mean tide”
position. The radial component of this restitution to obtain the “mean
tide” values amounts to about −12 cm at the poles and about +6 cm at
the equator.

7.1.4 Rotational Deformation due to Polar Motion

The variation of station coordinates caused by the pole tide can amount
to a couple of centimeters and needs to be taken into account.
Let us choose x̂, ŷ and ẑ as a terrestrial system of reference. The ẑ axis
is oriented along the Earth’s mean rotation axis, the x̂ axis is in the
direction of the adopted origin of longitude and the ŷ axis is orthogonal
to the x̂ and ẑ axes and in the plane of the 90◦ E meridian.
The centrifugal potential caused by the Earth’s rotation is

V =
1
2
[r2|~Ω|2 − (~r · ~Ω)2], (19)

where ~Ω = Ω(m1 x̂+m2 ŷ+(1+m3) ẑ). Ω is the mean angular velocity
of rotation of the Earth; m1, m2 describe the time dependent offset of
the instantaneous rotation pole from the mean, and m3, the fractional
variation in the rotation rate; r is the geocentric distance to the station.
Neglecting the variations in m3 which induce displacements that are
below the mm level, the m1 and m2 terms give a first order perturbation
in the potential V (Wahr, 1985)

∆V (r, θ, λ) = −Ω2r2

2
sin 2θ (m1 cosλ+m2 sinλ). (20)

The radial displacement Sr and the horizontal displacements Sθ and Sλ

(positive upwards, south and east respectively in a horizon system at
the station) due to ∆V are obtained using the formulation of tidal Love
numbers (Munk and MacDonald, 1960):

Sr = h2
∆V
g
, Sθ =

`2
g
∂θ∆V, Sλ =

`2
g

1
sin θ

∂λ∆V. (21)
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The position of the Earth’s mean rotation pole has a secular variation,
and its coordinates in the Terrestrial Reference Frame discussed in Chap-
ter 4 are given, in terms of the polar motion variables (xp, yp) defined in
Chapter 5, by appropriate running averages x̄p and −ȳp. Then

m1 = xp − x̄p, m2 = −(yp − ȳp). (22)

For the most accurate results, estimates of the mean pole should be used.
These are provided by the IERS Earth Orientation Centre and are made
available at <16>. It is also possible to approximate the pole path by
a linear trend. The estimates below are derived from the same IERS
Earth Orientation Centre data.
x̄p(t) = x̄p(t0) + (t− t0)ẋp(t0), ȳp = ȳp(t0) + (t− t0)ẏp(t0), (23a)

x̄p(t0) = 0.054, ẋp(t0) = 0.00083, ȳp(t0) = 0.357, ẏp(t0) = 0.00395, (23b)

where x̄p, ȳp are in arcseconds, their rates are in arcseconds per year,
and t0 is 2000.
Using Love number values appropriate to the frequency of the pole tide
(h = 0.6027, l = 0.0836) and r = a = 6.378× 106m, one finds

Sr = −32 sin 2θ (m1 cosλ+m2 sinλ) mm,
Sθ = −9 cos 2θ (m1 cosλ+m2 sinλ) (mm),
Sλ = 9 cos θ (m1 sinλ−m2 cosλ) mm,

(24)

with m1 and m2 given in seconds of arc.
Taking into account that m1 and m2 vary, at most, 0.8 arcsec, the max-
imum radial displacement is approximately 25 mm, and the maximum
horizontal displacement is about 7 mm.
If X, Y , and Z are Cartesian coordinates of a station in a right-handed
equatorial coordinate system, the changes in them due to polar motion
are

[dX, dY, dZ]T = RT [Sθ, Sλ, Sr]T , (25)

where

R =

( cos θ cosλ cos θ sinλ − sin θ
− sinλ cosλ 0

sin θ cosλ sin θ sinλ cos θ

)
. (26)

7.1.5 Atmospheric Loading

Temporal variations in the geographic distribution of atmospheric mass
load the Earth and deform its surface. For example, pressure variations
on the order of 20 HPa (and even larger) at mid-latitudes, are observed
in synoptic pressure systems with length scales for 1000-2000 km and
periods of approximately two weeks. Seasonal pressure changes due to air
mass movements between the continents and oceans can have amplitudes
of up to 10 HPa in particular over the large land masses of the Northern
Hemisphere. At the interannual periods, basin-wide air pressure signals
with amplitudes of several HPa also contribute to the spectrum of the
loading signal.
Other surface loads due to changes in snow and ice cover, soil mois-
ture and groundwater, as well as ocean-bottom pressure also contribute
to surface displacements. For example, at seasonal time scales, it is
expected that the contribution of hydrological loads to surface displace-
ments exceeds the one from air pressure (Blewitt et al., 2001). However,
while the atmospheric load is fairly well known from global air pressure
data sets, no suffcient models for ocean bottom pressure, snow and soil
moisture exists at this time. Therefore, in the following, focus is on
atmospheric loading. However, the discussion applies also to any other
surface load.

16ftp://maia.usno.navy.mil/conv2000/chapter7/annual.pole
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Theoretical studies by Rabbel and Zschau (1985), Rabbel and Schuh
(1986), vanDam and Wahr (1987), and Manabe et al. (1991) demon-
strate that vertical crustal displacements of up to 25 mm are possible at
mid-latitude stations due to synoptic pressure systems. Annual signals
in the vertical are on the order of 1-2 mm but maximum signals of more
than 3 mm are possible over large parts of Asia, Antarctica, Australia
and Greenland (Mangarotti et al., 2001; Dong et al., 2002). Pressure
loading effects are larger at higher latitude sites due to the more inten-
sive weather systems (larger in amplitude and more spatially coherent)
found there. Effects are smaller at mid-latitude sites and at locations
within 500 km of the sea or ocean due to the inverted barometer re-
sponse of the ocean. In all cases, horizontal crustal deformations are
about one-third the amplitude of the vertical effects.

Two basic methods for computing atmospheric loading corrections to
geodetic data have been applied so far: 1) using geophysical models or
simple approximations derived from these models and 2) using empirical
models based on site-dependent data.

The standard geophysical model approach is based on the estimation of
atmospheric loading effects (vertical and horizontal deformations, grav-
ity, tilt and strain) via the convolution of Green’s functions with a global
surface pressure field. The geophysical approach is analogous to methods
used to calculate ocean tidal loading effects. However, due to the contin-
uous spectrum of the atmospheric pressure variations, the compution of
the atmospheric loading signal must be carried out in the time domain.
The major advantage of the geophysical model approach is that load-
ing effects can be computed in a standardized way for any point on the
Earth’s surface more or less instantaneously. The geophysical approach
currently suffers from a number of problems including: the requirement
of a global pressure data set, a minimum of 24 hours in time delay in
the availability of the global pressure data set, limitations of the pres-
sure data itself (low temporal and spatial resolution), uncertainties in
the Green’s functions and uncertainties in the ocean response model.

In the empirical approach, site-dependent pressure loading effects are
computed by determining the fit of local pressure variations to the geode-
tic observations of the vertical crustal motion. This approach is likely
to produce better results (than the geophysical approach) for a given
site but has a number of drawbacks as well. 1.) Geodetic observations
have to be available for a certain period of time before a reliable regres-
sion coeffcient can be determined; this period of time may be as large
as serveral years. 2.) The regression coefficients cannot be extraploated
to a new site (for which no data exist); 4.) The regression coefficient
has been observed to change with time and with observing technique;
4.) Regression coefficients at coastal sites are time dependent due to in-
terannual changes in the regional weather pattern (H.-P. Plag, personal
communication, 2002); 5.) The regession coefficient can only be used
for vertical crustal motions; and 6.) It is uncertain that other pressure
correlated geodetic signals are not being ‘absorbed’ into the regression
coefficient determination. So while this approach would lower the scatter
on a given geodetic time series the most, one would always be uncertain
whether only atmospheric loading effects were being removed with the
correlation coefficient.

In a hybrid method, regression coefficients determined from a geophysical
model instead of geodetic observations could be used to operationally
correct observed vertical position determinations from local air pressure
alone. The vertical deformation caused by the change in pressure, in
this case, can then be given in terms of a local pressure anomaly. The
regression coefficients can be determined by fitting local pressure to the
vertical deformation predicted by the geophysical model. Regression
coefficients determined in this manner would still suffer from both the

85



N
o
.
3
2 IERS

Technical
Note

7 Displacement of Reference Points

uncertainty in the Green’s function and the quality of the air pressure
data.

In February 2002, the Special Bureau on Loading (SBL) was established
within the IERS. The charge of the SBL is to promote, stimulate and
coordinate work and progress towards a service providing information
on Earth surface deformation due to surface mass loading, including
the atmosphere, ocean and continental hydrosphere. In establishing the
SBL the IERS is recommending that the convention for computing at-
mospheric loading corrections will be based on the geophysical model
approach.

At the 2002 IERS Meeting in Munich, the IERS adopted the conven-
tion that corrections for surface load variations including the atmosphere
should be determined using the geophysical model approach. Further,
these corrections should be obtained from the IERS SBL. The point of
this recommendation is to ensure that comparisons of geodetic time se-
ries between different observing techniques or within the same technique
but at different times and locations have a consistent atmospheric pres-
sure loading (and later also non-tidal ocean and continental hydrological
loading) correction applied.

The ultimate goal of the SBL is to provide in near real-time a consistent
global solution data set, describing at the surface, deformation due to
all surface loads (including atmospheric pressure variations) in reference
frames relevant for direct comparison with geodetic observing techniques.
The SBL will provide global gridded solutions of 3-D displacements and
time series of displacements for all IERS sites. Time series will be deter-
mined from 1985 to the present. Displacements will be determined for
both the European Center for Medium Range Weather Forecasts and the
National Center for Environmental Prediction operational pressure data
sets for the inverted barometer and the non-inverted barometer ocean
models. For more information see: <17>.

Regression coefficients based on a geophysical model are already available
for a number of VLBI sites through the SBL web page and the IERS
Convention’s web page <18>. The regression coefficients were computed
using 18 years of the NCEP Reanalysis Data (1 Jan. 1980 to 31 Dec.
1997). The data are 6 hourly values of surface pressure given on a
2.5◦×2.5◦ global grid. Vertical crustal motions at a particular site are
modeled by convolving Farrell’s (1972) Greens functions for a Gutenberg-
Bullen A Earth model. The ocean was assumed to be inverse barometric
for the calculations. The regression results (mm/mbar) are determined
via a linear regression between the modeled crustal displacements and
the local surface pressure determined from the NCEP data set. An
inverted barometer model was used in determining the ocean’s response
to pressure.

For more information on atmospheric pressure loading and geodetic time
series, see the references listed in the extended bibliography.

7.2 Displacement of Reference Points of Instruments

7.2.1 VLBI Antenna Thermal Deformation

The following has been excerpted from the Explanatory Supplement to
the IERS Conventions (1996) Chapters 6 and 7 (Schuh, 1999).

Most VLBI telescopes are of Cassegrain type with alt-azimuth or polar
mount and secondary focus. Figures 7.1 and 7.2, based on Nothnagel
et al. (1995), show the principles of these antenna mounts. The height
of the concrete foundation is denoted by hf , the height of the antenna

17http://www.gdiv.statkart.no/sbl
18ftp://maia.usno.navy.mil/conv2000/chapter7/atmospheric.regr
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Fig. 7.1 Alt-azimuthal telescope mount. Fig. 7.2 Polar telescope mount.

pillar by hp, the height of the vertex by hv, the height of the subreflector
by hs and the declination shaft by hd.

Then, the thermal deformation effect ∆τ in s on the VLBI delay mea-
surement τ can be modeled. For alt-azimuth mounts

∆τ = 1
c ·
[
γf · (T (t−∆tf )− T0) · (hf · sin(ε))

+γa · (T (t−∆ta)− T0) · (hp · sin(ε) + hv − 1.8 · hs)
]
.

(28)

For polar mounts

∆τ = 1
c ·
[
γf · (T (t−∆tf )− T0) · (hf · sin(ε))

+γa · (T (t−∆ta)− T0) · (hp · sin(ε)
+hv − 1.8 · hs + hd · cos(δ))

]
.

(29)

In the above equations (28) and (29) c in m/s is the speed of light, γf

and γa in 1/◦C are the expansion coefficents for the foundation and for
the antenna, respectively, and hf , hp, hv, hs and hd are the dimensions
of the telescopes in m. For prime focus antennas, the factor for hs is 0.9
instead of 1.8. The temperature of the telescope structure is denoted by
T , and T0 is a reference temperature, e.g. 20◦C which is the usual ref-
erence temperature used when designing and constructing buildings. If
the actual temperature of the telescope structure is not available, which
might be the case at most VLBI sites, the surrounding air temperature
can be taken instead. The time delay between the change in the sur-
rounding air temperature and the expansion of the telescope structure is
denoted by ∆tf for the foundation part and by ∆ta for the antenna part
and depend strongly on the material of the telescope. Measurements
yielded values of ∆ta=2 hours for a steel telescope structure (Nothnagel
et al., 1995) and of ∆tf=6 hours for a concrete telescope structure (El-
gered and Carlsson, 1995). The elevation and declination of the observed
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radio source are denoted by ε and δ. Table 7.6 contains the dimensions
of some frequently used geodetic VLBI antennas and mean expansion
coefficients.

Table 7.7 gives the thermal variation ∆τ of the VLBI delay observable,
based on the telescope dimensions and expansion coefficients given in
Table 7.6 and equations (28) and (29). Temperature variation (T − T0)
of 10◦C and radio source elevations between 5◦ and 90◦ were entered,
time lags ∆tf and ∆ta were assumed to be zero.

For big VLBI telescopes, variations in the VLBI delay observations of
several picoseconds can occur. Regarding a baseline of two telescopes
with the signal from the radio source arriving first at site 1, the total
effect on the measured delay on the baseline is:

∆τbaseline = ∆τ1 −∆τ2.

Table 7.6 Dimensions and expansion coefficients of frequently used geodetic
VLBI telescopes.

Telescope Foundation part Antenna part
(concrete) (steel)

hf γf hp hv hs hd γa

m 1/◦C m m m m 1/◦C
Effelsberg 0.0 1.0× 10−5 50.0 8.5 28.0 − 1.2× 10−5

Hartebeesthoek 0.0 1.0× 10−5 12.7 2.3 9.4 6.7 1.2× 10−5

Madrid 3.0 1.0× 10−5 16.8 2.7 10.8 − 1.2× 10−5

Matera 3.0 1.0× 10−5 10.5 3.8 5.7 − 1.2× 10−5

Medicina 2.3 1.0× 10−5 15.5 4.3 4.3 − 1.2× 10−5

Noto 2.2 1.0× 10−5 15.7 4.2 5.0 − 1.2× 10−5

O’Higgins 1.0 1.0× 10−5 6.2 − − − 1.2× 10−5

Onsala 11.3 1.0× 10−5 2.9 3.4 5.5 − 1.2× 10−5

Westford 16.9 1.0× 10−5 2.0 3.0 3.6 − 1.2× 10−5

Wettzell 8.0 1.0× 10−5 4.0 3.7 7.9 − 1.2× 10−5

Table 7.7 Thermal variations ∆τ in ps of the
VLBI delay observable for frequently
used geodetic VLBI telescopes for a
temperature variation of 10◦C and dif-
ferent radio source elevations.

Telescope (T − T0)=10◦C
Elevation ε

5◦ 30◦ 60◦ 90◦

∆τ ∆τ ∆τ ∆τ
ps ps ps ps

Effelsberg −15.0 −6.8 +0.6 +3.2
Hartebeesthoek −7.8 −5.0 −1.9 +0.1
Madrid −6.0 −2.8 0.0 +1.0
Matera −2.1 0.0 +1.9 +2.6
Medicina −0.8 +2.1 +4.6 +5.6
Noto −1.3 +1.6 +4.2 +5.1
O’Higgins 0.2 +1.4 +2.4 +2.8
Onsala −2.2 −0.1 +1.7 +2.3
Westford −0.8 +1.8 +4.2 +5.0
Wettzell −3.8 −2.0 −0.5 0.0
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